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Abstract—In this paper a minimum-energy problem of perfect
control algorithm dedicated to LTI MIMO plants described in the
discrete-time state-space framework is shown. Following the new
facts concerning the above-mentioned issue, a new solution based
on the mathematical norms utilizing some generalized inverse
formulas is given in this paper. The simulation instance confirms
the correctness of a new intriguing method, which certainly leads
to the final proof of whole, undiscovered yet, modern control
theory.

Index Terms—perfect control, minimum-energy control design,
generalized σ-inverse, LTI MIMO, state-space domain, norms,
Neumann’s theorem

I. INTRODUCTION

The perfect control strategy is well-known and often found
in the modern control engineering practice [1]–[6]. Notwith-
standing, the control algorithm seems to only be clear for
square multi-input/multi-output (MIMO) plants including the
single-input/single output (SISO) ones [7]. It is true, for such
set of systems the problem of inverse model control (IMC)
does not rise doubts due to existence of so-called uniqueness
during design of perfect control schemes. However, in case
of nonsquare systems having different number of input and
output variables the behavior of nonuniqueness introduces
the expected complexity [7], [8]. In fact, an application of
generalized inverses with arbitrary degrees of freedom may
cause difficulties even for experienced designer. Due to se-
lection of proper inverse we can improve the properties of
the perfect control strategy dedicated, in particular, to linear
time-invariant (LTI) MIMO discrete-time systems described
in the state-space framework [7]. The aforementioned features
should be understood in terms of, e.g., minimum-energy of the
control inputs or, in more general, in context of improvement
of robustness behavior [8]. Following the recently obtained
results we can state that the classical minimum-norm inverse
based on the Moore-Penrose assumptions does not guarantee
the minimal energy for right-invertible plants [8]–[10]. The
heuristic and analytical results have shown that in case of
systems with greater number of input than output variables
we should apply other inverses, for instance the quite recently
introduced σ and H ones [7]. These inverses can not only
stabilize entire perfect control systems but, importantly, can
provide their minimum-energy characteristic. It should be

strongly emphasized that this paradigm can not be carried
out for left-invertible plants, in such a case the said control
strategy does not exist. In this paper the newly introduced
norm-based approach to the minimum-energy perfect control
problem is presented, which undoubtedly sheds a new light on
the complex problem examined here.

Following the introduction section in another one the system
representation of analyzed in the paper multivariable plants
is shown. In the same unit the perfect control algorithm is
presented. The energy-based approach to the perfect control
law is given in the next section. A main goal of this paper
related to the norm-based solution is also presented in the third
section. Section four shows representative simulation example,
which confirms the usefulness of postulated within the paper a
new method. At the end the final conclusions are tabelarized.

II. PERFECT CONTROL ALGORITHM

We start our considerations with the definition of plants
which are touched in the paper.

A. System representation

We consider the LTI MIMO controllable systems described
in the discrete-time state-space framework as follows

x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k),
(1)

having initial condition x0 = x(0) and x(k) ∈ Rn, y(k) ∈
Rny , u(k) ∈ Rnu . Additionally we assume that the parameter
matrices A, B and C are of appropriate dimensions whilst k
denotes a discrete time.

B. Perfect control law

The perfect control for right-invertible (nu ≥ ny) plants
defined by Eqs. (1) sounds as follows [8]

u(k) = −(CB)RCAx(k), (2)

where symbol (.)R describes any generalized inverse of the
parameter matrix CB. Note that above-mentioned control
strategy can be immediately obtained in terms of application
of predictor theory for reference value/setpoint yref (k) = 0.
It guarantees that after time delay d the output is equal to
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the above-mentioned setpoint. Additionally, the Eq. (2) can be
applied in the minimum variance control scenario.

Remark 1: It should strongly be emphasized that our perfect
control algorithm is different than the well-known optimal
control issue. For details see Ref. [8].

Having already the fundamental issues let us start our main
considerations below.

III. ENERGY-BASED PARADIGM OF PERFECT CONTROL
INPUT VARIABLES

Observe that after application of formula (2) directly to the
Eqs. (1) we can propose the crucial relation in the following
manner

x(k + 1) =
[
(In −B(CB)RC)A

]
x(k), (3)

where In represents the identity n-matrix. Moreover, after
some manipulations we receive a general solution in the form
of

x(k) =
[
(In −B(CB)RC)A

]k
x(0). (4)

Remark 2: Noticing that through the Eq. (4) we can calcu-
late a value of x(k) for k = 1, . . . , N −1, where N denotes a
time horizon, based on the initial state vector x(0) only. This
intriguing observation will be helpful during further energy-
based research shown in this paper.

A. Energy-based approach to the perfect control design

It is important that energy of the perfect control inputs can
be presented in every instant of time k as follows

E(k) = 〈u(k),u(k)〉 = ‖u(k)‖2, (5)

where symbols 〈a,b〉 and ‖x‖ denote the scalar product of
a,b ∈ Rn and a norm of vector x(k), respectively.

Now, after substitution the Eq. (4) strictly to the formula
(2) we obtain (for brevity we assume that yref (k) = 0)

u(k) = −(CB)RCA
[
(In −B(CB)RC)A

]k
x(0), (6)

and finally the energy of the perfect control inputs E(k)
sounds as follows

E(k) = ‖(CB)RCA
[
(In −B(CB)RC)A

]k
x(0)‖2. (7)

Observe, that for simplicity we can put without loss a
generality

P = In −B(CB)RC, (8)

and based on Eq. (7) we can immediately receive

E(k) = ‖(CB)RCA (PA)
k
x(0)‖2. (9)

Hence the entire energy is equal to

E =

∞∑
k=0

E(k). (10)

So, the main issue arises: what kind of generalized inverse
of the CB product should be chosen in order to guarantee
the minimum-energy perfect control inputs of plants defined
by Eqs. (1)? This fundamental problem is explained in detail

in the next section. For special selected so-called degrees of
freedom involved in parameter matrix β of the σ-inverse of
form [7], [8]

GR
σ = βT([GβT])−1, (11)

we receive smaller energy than in case of application the
classical minimum-norm one, in general.

B. Estimation of minimal energy

In order to determine the entire energy E let us describe its
consumption Et after t-steps as follows

Et =

t∑
k=0

E(k), t = 1, 2, 3 . . . (12)

For such assumption, after using the well-known norm
peculiarities, we can formulate the following approximation
(for example similar estimations are presented in Refs. [11],
[12])

Et =

t∑
k=0

‖(CB)RCA (PA)
k
x(0)‖2

≥ 1

t+ 1

(
t∑

k=0

‖(CB)RCA (PA)
k
x(0)‖

)2

. (13)

Thus,

Et ≥
1

t+ 1

(∥∥∥∥∥
t∑

k=0

(CB)RCA (PA)
k
x(0)

∥∥∥∥∥
)2

,

(14)

and finally

Et ≥
1

t+ 1

∥∥∥∥∥(CB)RCA

[
t∑

k=0

(PA)
k

]
x(0)

∥∥∥∥∥
2

. (15)

Of course, the aforementioned results based on the form
‖F‖ being the inductive/operator norm of any matrix F, i.e.,
‖F‖ = max

‖x‖≤1
{‖Fx‖ : x ∈ Rn}. In order to further estimation

of the minimal perfect control energy we should apply the
lemma given below.

Lemma 1 (Neumann): Let the matrix F fulfills the condition
‖F‖ < 1. Then, a following statement holds

‖(I− F)−1‖ ≤ 1

1− ‖F‖
. (16)

Next, assuming that ‖PA‖ < 1 we obtain

t∑
k=0

(PA)
k
= In +PA+ (PA)2 + . . .+ (PA)t

= (In −PA)−1
[
In − (PA)t+1

]
, (17)

and finally

Et ≥
1

t+ 1

∥∥(CB)RCA(In −PA)−1
[
In − (PA)t+1

]
x(0)

∥∥2 .
(18)
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Note, if the matrix F is nonsingular we obtain the following
approximation

‖x‖ = ‖FF−1x‖ ≤ ‖F−1‖‖Fx‖, (19)

and therefore

‖Fx‖ ≥ 1

‖F−1‖
‖x‖. (20)

Moreover, because of ‖(PA)t+1‖ < 1 we can state that the
matrix inverse of [In − (PA)t+1] certainly exists. Thus

Et ≥
1

t+ 1

∥∥(CB)RCA(In −PA)−1
[
In − (PA)t+1

]
x(0)

∥∥2
≥ 1

t+ 1

‖x(0)‖2∥∥∥[In − (PA)t+1]
−1

(In −PA) [(CB)RCA]
R
∥∥∥2

≥ 1

t+ 1

∥∥(CB)RCA
∥∥2 ‖x(0)‖2

‖[In − (PA)t+1]
−1‖2‖In −PA‖2

. (21)

After using the Neumann’s lemma we obtain the interesting
estimation

Et ≥
(
1− ‖PA‖t+1

)2
t+ 1

∥∥(CB)RCA
∥∥2

‖In −PA‖2
‖x(0)‖2. (22)

It confirms now, that for x(0) = 0 the energy Et = 0.

Note, that (
1−‖PA‖t+1)

2

t+1 → 0 as t→∞, so the total energy
of the perfect control inputs does not increase in an unlimited
way and it can be close to zero even when the vector x(0) 6= 0.
Based on the function

e(t) =

(
1− ‖PA‖t+1

)2
t+ 1

, (23)

the energy Et in the first seconds increases, then it becomes
smaller. The more ‖PA‖ is close to 1, the more time it has to
pass before the energy begins to decrease. The ‖PA‖ is close
to zero, the faster this moment is and the effect is unnoticeable
for certain values of ‖PA‖.

Based on the conducted considerations we can state that the
plants described by Eqs. (1) is stable if the following formula
holds

‖PA‖ < 1. (24)

In this scenario the crucial energy is the smallest. On the
other hand, if the condition (24) does not occur, the system
can be stable in spite of this (it is enough to assume that all
eigenvalues of the matrix PA have modulus strictly less than
one). However, in this case, determining a similar estimation
of the minimum energy is very difficult.

C. The conditions related to the minimization of energy

Let us now try to estimate the said energy Et from the
upper limit. This operation gives us the opportunity to obtain
the minimal energy of the perfect control input variables in

respect to the special chosen degrees of freedom of our stable
σ-inverse defined by Eq. (11). Then, we have

Et =

t∑
k=0

‖(CB)RCA (PA)
k
x(0)‖2

≤
t∑

k=0

‖(CB)RCA‖2‖PA‖2k‖x(0)‖2

= ‖(CB)RCA‖2
t∑

k=0

‖PA‖2k‖x(0)‖2. (25)

Because of
t∑

k=0

‖PA‖2k =
1− ‖PA‖2k+1

1− ‖PA‖2
, (26)

we have

Et ≤
‖(CB)RCA‖2

(
1− ‖PA‖2t+1

)
1− ‖PA‖2

‖x(0)‖2. (27)

Next, assuming that ‖PA‖ ≥ 0, we can write the following
formula

E ≤ ‖(CB)R‖2‖C‖2‖A‖2

1− ‖PA‖2
‖x(0)‖2, (28)

which means that the total perfect control energy as in Eq.
(2) of plants defined by Eqs. (1) is bounded. Therefore, we
can state that we can select such inverse (CB)R, for which
our energy will be the smallest. For that reason, let us try to
propose such conditions which certainly are in relation with
the following equation

‖(CB)R‖2‖C‖2‖A‖2

1− ‖PA‖2
=

‖(CB)R‖2‖C‖2‖A‖2

1− ‖(In −B(CB)RC)A‖2
≤

‖(CB)R‖2‖C‖2‖A‖2

1− (1 + ‖B‖2‖(CB)R‖2‖C‖2) ‖A‖2
. (29)

In order to obtain the pursued solution let us calculate the
minimum of the subsequent function

f(τ) =
a2c2τ2

1− (1 + b2c2τ2)a2
, (30)

where τ = ‖(CB)R‖, a = ‖A‖, b = ‖B‖, c = ‖C‖.
Observe, that based on the crucial formula

f ′(τ) =
2a2c2

(
1− a2

)
τ

(a2 (b2c2τ2 + 1)− 1)
2 , (31)

we can state that the total energy E can be obtained in case
of ‖A‖ < 1. Additionally, the minimal energy is related to
the value of norm ‖(CB)R‖.

For ‖A‖ = 1 it does not matter which inverse will be used.
In such a case the energy will be the same for any arbitrary
chosen generalized right inverse of CB in form of (CB)R.

Only when ‖A‖ > 1, the energy depends on a type of
inverse is used.

In order to illustrate the correctness of the new method let us
examine an intriguing simulation instance in the next section.
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Fig. 1. Perfect control runs of u(k), case: minimum-norm inverse.

As for plants with ‖A‖ < 1 the formulas (30) and (31) are
not quite representative, we will rather apply a system having
‖A‖ > 1. In the former case it does not matter what kind
of inverse is used. For both unique minimum-norm inverse
application and non-unique σ-inverse employment we obtain
the smallest value of energy E since ‖(CB)R‖ ≥ 1

‖CB‖ , in
general.

IV. SIMULATION EXAMPLE

Consider the system described by Eqs. (1) with A =[
1.5 0.5
0.5 0

]
, B =

[
0.33 2
1 1

]
, C =

[
0 10

]
and

x0 =
[
3 1

]
. Then, for β =

[
β1 β2

]
, we receive

the formula as in Eq. (28) with appropriate components
(not presented here due to a complexity). So, after standard
mathematical manipulations in Mathematica environment our
solution sounds as follows

β =
[
0.054 1

]
. (32)

Now, the total energy obtained through an application of
σ-inverse with selected β to the product of CB (see Eq. (2))
is equal to Eσ100 = 3.480. On the other hand, usage of the
classical minimum-norm right inverse brings us the higher
control energy equals E100 = 9.391. The perfect control
runs are depicted in figures below. Note that after time delay
k ≥ d = 1 (see Eqs. (1) and (2)) the output remains at the
reference/setpoint yref (k) = 0.

V. CONCLUSIONS

In this paper an attempt to minimization of the perfect
control input energy is presented. The solution based on the
approximation technique involves a norm mechanism. The
new approach strictly related to the analytical paradigm has
successfully been confirmed by the fruitful simulation example
made in Mathematica environment. The further study will

Fig. 2. Perfect control runs of u(k), case: σ-inverse.

Fig. 3. Perfect control runs of x(k), case: minimum-norm inverse.

be focused on the application of the method in the practical
problems.
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[12] V. L. Kulyk and D. Pączko, “Some methods of complement of weak
regular linear extensions of dynamical systems to regular,” Nonlinear
Oscillations, vol. 16, no. 1, pp. 65–74, 2013.

11


